

Writing A Compiler In Go

Thorsten Ball

Chapter 1

Compilers &
Virtual Machines

This first chapter is not included in the sample. Instead, the sample contains the second chapter,
which is the first one in which we write code.

1

Chapter 2

Hello Bytecode!

Our goal for this chapter is to compile and execute this Monkey expression:
1 + 2

That doesn’t sound like an ambitious goal, but in order to reach it, we will have to learn many
new things and build up a lot of the infrastructure we’re going to use in the upcoming chapters.
And by choosing the simple expression 1 + 2 we won’t be distracted by the Monkey code itself
and how it should work. We can concentrate on our compiler and virtual machine.

At the end of this chapter we want to be able to:

• take the Monkey expression 1 + 2
• tokenize and parse it using our existing lexer, token and parser packages
• take the resulting AST, whose nodes are defined in our ast package
• pass it to the newly-built compiler, which compiles it to bytecode
• take the bytecode and hand it over to the also newly-built virtual machine which will

execute it
• make sure that the virtual machine turned it into 3.

The 1 + 2 expression will travel through all the major parts of our new interpreter:

In terms of data structures, you can see that there will be quite a few transformations until we
end up with the 3 as our result:

Since we’ll be using a lot of the packages we built in the previous book, we can already handle
everything up to the AST. After that we’re entering unchartered territory. We need to define
bytecode instructions, build a compiler and construct a virtual machine – just to turn 1 + 2
into 3. Sounds daunting? Worry not, we’ll do this step by step and build from the ground up,
as always, and start with the bytecode.

2

First Instructions

As I mentioned in the previous chapter, the architecture of the virtual machine is the single-
biggest influence on what the bytecode looks like. That means we need to decide what type of
machine we’re going to build before we can start to specify bytecode.

So without further ado, let’s pull back the curtain: we’re going to build a stack machine!
Why? Because stack machines are far easier to understand and to build for beginners than
register machines. Less concepts, less moving parts. And all the performance considerations –
is a register machine faster? – do not play a huge role for us. Our priorities are learning and
understanding.

Later on we’ll see more of the implications this decision has, but the immediate and most
practical one is that we now have to do stack arithmetic. That means, in order to reach our
declared goal of compiling and executing the Monkey expression 1 + 2, we have to translate it
to bytecode instructions that make use of a stack. The stack is where a stack machine does its
work – we can’t just tell it to add two numbers, without making use of the stack.

Thankfully, we saw a similar example before and already know how to do arithmetic with a
stack. We first get the operands 1 and 2 on to the stack and then tell the VM: “add these!”.
This “add these!” instruction should then cause the VM to take the two topmost elements from
the stack, add them together and push the result back on to the stack. Here’s what stack should
look like before and after the instruction:

So in order to fully implement this we need to tell the VM:

• Push 1 on to the stack
• Push 2 on to the stack
• Add the two topmost elements together

We need to create three instructions. As programmers, though, we know that we only need to
define two separate instruction types, since pushing 2 on to the stack should be the same as
pushing 1, except that the “argument” is different. So, two instruction types in total: one for
pushing something on to the stack and one for adding things that are already on the stack.

We’ll implement both in the same way. First we define their opcodes and how they are encoded
in bytecode. Then we extend the compiler so it can produce these instructions. As soon as the
compiler knows how to do that, we can create the VM that decodes and executes them. And
we start with the instructions that tell the VM to push something on to the stack.

3

Starting With Bytes

Here we are. We need to define our first bytecode instruction. How do we do that? Well, since
creating definitions while programming is not much more than telling the computer what we
know, let’s ask ourselves: what do we know about bytecode?

We know that it’s made up of instructions. And we also know that the instructions themselves
are a series of bytes and a single instruction consists of an opcode and an optional number of
operands. An opcode is exactly one byte wide, has an arbitrary but unique value and is the
first byte in the instruction. Looks like we know quite a lot and the best thing is, that this is
precise enough to be turned into code – literally.

As our first official practical act of coding in this book, we create a new package, called code,
where we start to define our Monkey bytecode format:

// code/code.go

package code

type Instructions []byte

type Opcode byte

Instructions is a slice of bytes and an Opcode is a byte. Perfect, they match our descriptions
in prose pretty well. But there are two definitions missing here.

The first one is Instruction – singular. Why didn’t we define it here as []byte? Because it’s far
more handy to pass around and work with a []byte and treat it implicitly as an instruction than
to encode this definition in Go’s type system. You’ll see soon enough how often we’re going to
use []byte and how cumbersome type assertions and type casting from and to an Instruction
type would be there.

The other missing definition is one for Bytecode. There should at least be some definition of
bytecode that tells us it’s made up of instructions, right? The reason for its absence is we’d run
into a nasty import-cycle if we were to define Bytecode here in the code package. But it won’t
be missing for too long. Once we get to the compiler, we’ll define it there – in the compiler’s
package.

Now that we have definitions for Opcode and Instructions, we can define our first opcode, the
one that tells the VM to push something on the stack. And here’s a surprise: the opcode won’t
have “push” in its name. In fact, it won’t be solely about pushing things. Allow me to explain.

We said earlier that when we compile the Monkey expression 1 + 2, we want to generate three
different instructions; two of which tell the VM to push 1 and 2 on to the stack. A first instinct
might tell us to implement these by defining a “push”-instruction with an integer as its operand
with the idea being that the VM then takes the integer operand and pushes it on to the stack.
And for integers that would work fine, because we could easily encode them and put them
directly into the bytecode. But what if later on we wanted to push other things contained in
Monkey code? String literals, for example. Putting those into the bytecode is also possible,
true, since it’s just made of bytes after all, but it would also be a lot of bloat and would sooner
or later become unwieldy.

That’s where the idea of constants come into play. In this context, “constant” is short for
“constant expression” and refers to expressions whose value doesn’t change, is constant, and can
be determined at compile time:

4

That means we don’t need to run the program to know what these expressions evaluate to. A
compiler can find them in the code and store the value they evaluate to. After that, it can
reference the constants in the instructions it generates, instead of embedding the values directly
in them. And while “reference” sounds like a special data type, it’s far easier than that. A
plain integer does the job just fine and can serve as an index into a data structure that holds
all constants, often called a constant pool.

And that’s exactly what our compiler is going to do. When we come across an integer lit-
eral (a constant expression) while compiling, we’ll evaluate it and keep track of resulting
*object.Integer by storing it in memory and assigning it a number. In the bytecode instruc-
tions we’ll refer to the *object.Integer by this number. After we’re done compiling and pass
the instructions to the VM for execution, we’ll also hand over all the constants we’ve found
by putting them in a data structure – our constant pool – where the number that has been
assigned to each constant can be used as an index to retrieve it.

Back to our first opcode. It’s called OpConstant and it has one operand: the number we pre-
viously assigned to the constant. When the VM executes OpConstant it retrieves the constant
using the operand as an index and pushes it on to the stack. Here’s out first opcode definition:

// code/code.go

// [...]

const (
OpConstant Opcode = iota

)

While this looks exactly like the meager three lines of code that they are, this addition is the
groundwork for all future Opcode definitions. Each definition will have an Op prefix and the
value it refers to will be determined by iota. We let iota generate increasing byte values for us,
because we just don’t care about the actual values our opcodes represent. They only need to
be distinct from each other and fit in one byte. iota makes sure of that for us.

What’s missing from this definition is the part that says OpConstant has one operand. There’s
no technical reason for writing this down, since we could share this piece of knowledge implicitly
between compiler and VM. For debugging and testing purposes, though, it’s handy being able
to lookup how many operands an opcode has and what its human-readable name is. In order
to achieve that, we’ll add proper definitions and some tooling to the code package:

// code/code.go

import "fmt"

type Definition struct {
Name string
OperandWidths []int

}

5

var definitions = map[Opcode]*Definition{
OpConstant: {"OpConstant", []int{2}},

}

func Lookup(op byte) (*Definition, error) {
def, ok := definitions[Opcode(op)]
if !ok {

return nil, fmt.Errorf("opcode %d undefined", op)
}

return def, nil
}

The Definition for an Opcode has two fields: Name and OperandWidths. Name helps to make an
Opcode readable and OperandWidths contains the number of bytes each operand takes up.

The definition for OpConstant says that its only operand is two bytes wide, which makes it an
uint16 and limits its maximum value to 65535. If we include 0 the number of representable values
is then 65536. That should be enough for us, because I don’t think we’re going to reference
more than 65536 constants in our Monkey programs. And using an uint16 instead of, say, an
uint32, helps to keep the resulting instructions smaller, because there are less unused bytes.

With this definition in place we can now create our first bytecode instruction. Without any
operands involved that would be as simple as adding an Opcode to an Instructions slice. But
in the case of OpConstant we need to correctly encode the two-byte operand.

For that we’ll now create a function that allows us to easily create a single bytecode instruction
that’s made up of an Opcode and an optional number of operands. We’ll call it Make, which gives
us the pretty great identifier code.Make in other packages.

And here’s what we’ve been waiting for, the first test of this book, showing what we want Make
to do:

// code/code_test.go

package code

import "testing"

func TestMake(t *testing.T) {
tests := []struct {

op Opcode
operands []int
expected []byte

}{
{OpConstant, []int{65534}, []byte{byte(OpConstant), 255, 254}},

}

for _, tt := range tests {
instruction := Make(tt.op, tt.operands...)

if len(instruction) != len(tt.expected) {
t.Errorf("instruction has wrong length. want=%d, got=%d",

len(tt.expected), len(instruction))
}

for i, b := range tt.expected {
if instruction[i] != tt.expected[i] {

t.Errorf("wrong byte at pos %d. want=%d, got=%d",

6

i, b, instruction[i])
}

}
}

}

Don’t be put off by tests only containing one test case. We’ll extend it later on when we add
more Opcodes to our code vocabulary.

For now, we only pass OpConstant and the operand 65534 to Make. We then expect to get back
a []byte holding three bytes. Of these three, the first one has to be the opcode, OpConstant,
and the other two should be the big-endian encoding of 65534. That’s also why we used 65534
and not the maximum value 65535: this way we can check that the most significant byte comes
first. 65534 will be encoded in big endian as the byte sequence 0xFF 0xFE and 65535 would be
encoded as 0xFF 0xFF – hard to recognize an order.

Since Make doesn’t exist yet, the test does not fail, but fails to compile, so here’s the first version
of Make:

// code/code.go

import (
"encoding/binary"
"fmt"

)

func Make(op Opcode, operands ...int) []byte {
def, ok := definitions[op]
if !ok {

return []byte{}
}

instructionLen := 1
for _, w := range def.OperandWidths {

instructionLen += w
}

instruction := make([]byte, instructionLen)
instruction[0] = byte(op)

offset := 1
for i, o := range operands {

width := def.OperandWidths[i]
switch width {
case 2:

binary.BigEndian.PutUint16(instruction[offset:], uint16(o))
}
offset += width

}

return instruction
}

And that’s how you make bytecode.

The first thing we’re doing here is to find out how long the resulting instruction is going to
be. That allows us to allocate a byte slice with the proper length. Note that we don’t use the
Lookup function to get to the definition, which gives us a much more usable function signature
for Make in the tests later on. By circumventing Lookup and not having to return possible errors,

7

we can use Make to easily build up bytecode instructions without having to check for errors after
every call. The risk of producing empty byte slices by using an unknown opcode is one we’re
willing to take, since we’re on the producing side here and know what we’re doing when creating
instructions.

As soon as we have the final value of instructionLen, we allocate the instruction []byte and
add the Opcode as its first byte – by casting it into one. Then comes the tricky part: we iterate
over the defined OperandWidths, take the matching element from operands and put it in the
instruction. We do that by using a switch statement with a different method for each operand,
depending on how wide the operand is.

As we define additional Opcodes, we soon have to extend this switch statement. For now, we
only make sure that a two-byte operand is encoded in big endian. And while it’s not hard to
do that by hand, we use binary.BigEndian.PutUint16 from the standard library for this, with
the benefit of having the name of the encoding immediately visible.

After encoding the operand, we increment offset by its width and the next iteration of the loop.
Since the OpConstant opcode in our test case has only one operand, the loop performs only one
iteration before Make returns instruction.

And, would you look at that, our fist test is compiling and passing:
$ go test ./code
ok monkey/code 0.007s

We successfully turned OpConstant and the operand 65534 into three bytes. That means we
created our first bytecode instruction!

The Smallest Compiler

Now that we have a toolbox called code, we can start working on the compiler. Since we want
a system that works from end to end as soon as possible, and not a system that can only be
turned on once it’s feature-complete, our goal in this section is to build the smallest possible
compiler. It should only do one thing for now: produce two OpConstant instructions that later
cause the VM to correctly load the integers 1 and 2 on to the stack.

In order to achieve that, this minimal compiler has to do the following: traverse the AST we pass
in, find the *ast.IntegerLiteral nodes, evaluate them by turning them into *object.Integer
objects, add the objects to the constant pool, and finally emit OpConstant instructions that
reference the constants in said pool.

Sounds good? Perfect! Let’s start by defining Compiler and its interface in a new compiler
package:

// compiler/compiler.go

package compiler

import (
"monkey/ast"
"monkey/code"
"monkey/object"

)

type Compiler struct {
instructions code.Instructions
constants []object.Object

}

8

func New() *Compiler {
return &Compiler{

instructions: code.Instructions{},
constants: []object.Object{},

}
}

func (c *Compiler) Compile(node ast.Node) error {
return nil

}

func (c *Compiler) Bytecode() *Bytecode {
return &Bytecode{

Instructions: c.instructions,
Constants: c.constants,

}
}

type Bytecode struct {
Instructions code.Instructions
Constants []object.Object

}

It really is minimal, isn’t it? The Compiler is a small struct with only two fields: instructions
and constants. Both are internal fields and will later be modified by the Compile method.
instructions will hold the generated bytecode and constants is a slice that serves as our constant
pool.

But I bet the thing that caught your eye immediately is the definition we’ve been looking for
earlier, in the code package: Bytecode! There it is and it doesn’t need a lot of explanation. It
contains the Instructions the compiler generated and the Constants the compiler evaluated.

Bytecode is what we’ll pass to the VM and make assertions about in our compiler tests. Speaking
of which, the Compile method is empty and we’re now going to write our first compiler test that
tells us what it should do.

// compiler/compiler_test.go

package compiler

import (
"monkey/code"
"testing"

)

type compilerTestCase struct {
input string
expectedConstants []interface{}
expectedInstructions []code.Instructions

}

func TestIntegerArithmetic(t *testing.T) {
tests := []compilerTestCase{

{
input: "1 + 2",
expectedConstants: []interface{}{1, 2},
expectedInstructions: []code.Instructions{

9

code.Make(code.OpConstant, 0),
code.Make(code.OpConstant, 1),

},
},

}

runCompilerTests(t, tests)
}

func runCompilerTests(t *testing.T, tests []compilerTestCase) {
t.Helper()

for _, tt := range tests {
program := parse(tt.input)

compiler := New()
err := compiler.Compile(program)
if err != nil {

t.Fatalf("compiler error: %s", err)
}

bytecode := compiler.Bytecode()

err = testInstructions(tt.expectedInstructions, bytecode.Instructions)
if err != nil {

t.Fatalf("testInstructions failed: %s", err)
}

err = testConstants(t, tt.expectedConstants, bytecode.Constants)
if err != nil {

t.Fatalf("testConstants failed: %s", err)
}

}
}

What’s happening here doesn’t take long to explain: we take Monkey code as input, we parse
it, produce an AST, hand it to the compiler and then make assertions about the bytecode the
compiler produced.

We do that by constructing a compilerTestCase in which we define the input, which constants
we expect in the constant pool and which instructions we expect the compiler to generate. Then
we hand the tests slice with the compilerTestCases to runCompilerTests to run them.

That’s a slightly different approach to constructing tests compared to the first book. The reason
for that is Go 1.9, which introduced the wonderful t.Helper method. t.Helper, which we call in
runCompilerTests, allows us to remove duplicated logic in test functions by defining test helpers.
Think of it as inlining runCompilerTests into TestIntegerArithmetic. That in turn allows to
abstract away the common behaviour shared by every compiler test we’re going to write, which
greatly reduces the noise in every test function and the page count of this book.

Now, let’s talk about the helpers used in runCompilerTests.

The parse function contains some of the things we built in the first book: the lexer and the
parser. We hand it a string and get back an AST:

// compiler/compiler_test.go

import (
"monkey/ast"

10

"monkey/code"
"monkey/lexer"
"monkey/parser"
"testing"

)

func parse(input string) *ast.Program {
l := lexer.New(input)
p := parser.New(l)
return p.ParseProgram()

}

That’s the prelude. The main part of runCompilerTests revolves around the two fields of the
Bytecode the compiler produced. First, we want to make sure that the bytecode.Instructions
are correct. For that we have the testInstructions helper function:

// compiler/compiler_test.go

import (
"fmt"
// [...]

)

func testInstructions(
expected []code.Instructions,
actual code.Instructions,

) error {
concatted := concatInstructions(expected)

if len(actual) != len(concatted) {
return fmt.Errorf("wrong instructions length.\nwant=%q\ngot =%q",

concatted, actual)
}

for i, ins := range concatted {
if actual[i] != ins {

return fmt.Errorf("wrong instruction at %d.\nwant=%q\ngot =%q",
i, concatted, actual)

}
}

return nil
}

As you can see, it uses another helper called concatInstructions:
// compiler/compiler_test.go

func concatInstructions(s []code.Instructions) code.Instructions {
out := code.Instructions{}

for _, ins := range s {
out = append(out, ins...)

}

return out
}

We need concatInstructions because the expectedInstructions field in compilerTestCase is

11

not just a slice of bytes, but a slice of slices of bytes. And that’s because we use code.Make
to generate the expectedInstructions, which produces a []byte. So in order to compare the
expectedInstructions with the actual instructions, we need to turn the slice of slices into a
flattened slice by concatenating the instructions.

The other helper used by runCompilerTests is testConstants, which resembles a lot of the test
helpers we used in our evaluator package back in the first book:

// compiler/compiler_test.go

import (
// [...]
"monkey/object"
// [...]

)

func testConstants(
t *testing.T,
expected []interface{},
actual []object.Object,

) error {
if len(expected) != len(actual) {

return fmt.Errorf("wrong number of constants. got=%d, want=%d",
len(actual), len(expected))

}

for i, constant := range expected {
switch constant := constant.(type) {
case int:

err := testIntegerObject(int64(constant), actual[i])
if err != nil {

return fmt.Errorf("constant %d - testIntegerObject failed: %s",
i, err)

}
}

}

return nil
}

There’s a lot of noise here, but what’s happening here is not complicated. testConstants iterates
through the expected constants and compares them with the actual constants the compiler
produced. The switch statement is a sign of things to come. We will extend it with new
case branches as soon as we expect more than integers to end up in the constant pool. For
now it only uses one other helper, testIntegerObject, which is a nearly-identical replica of the
testIntegerObject we used in our evaluator tests:

// compiler/compiler_test.go

func testIntegerObject(expected int64, actual object.Object) error {
result, ok := actual.(*object.Integer)
if !ok {

return fmt.Errorf("object is not Integer. got=%T (%+v)",
actual, actual)

}

if result.Value != expected {
return fmt.Errorf("object has wrong value. got=%d, want=%d",

12

result.Value, expected)
}

return nil
}

That’s all there is to TestIntegerArithmetic. The test itself is not complex, but establishes how
we will write compiler tests in the future by bringing with it a lot of different test helpers. It
looks like a lot of code for such a small test, but I promise you that we’ll get a lot of mileage
out of this test setup.

Now, how does the test itself do? Well, not so good:
$ go test ./compiler
--- FAIL: TestIntegerArithmetic (0.00s)
compiler_test.go:31: testInstructions failed: wrong instructions length.
want="\x00\x00\x00\x00\x00\x01"
got =""

FAIL
FAIL monkey/compiler 0.008s

But considering that we didn’t write any code for the compiler yet, except defining its interface,
that’s not so bad, is it? What’s bad though is the output:

want="\x00\x00\x00\x00\x00\x01"

No one looks at that and goes “Ah, I see…” I know that you’re anxious to get that compiler
running and humming, but I can’t let this unreadable gibberish stand. I mean, it’s correct, those
are the bytes we want, printed in hexadecimal, but it’s just not helpful. And believe me, soon
enough this output would drive us nuts. So before we start filling out the compiler’s Compile()
method, we’re going to invest in our developer happiness and teach our code.Instructions how
to properly print themselves.

Bytecode, Disassemble!

You can teach types to print themselves in Go by giving them a String() method. That also
holds true for bytecode instructions. It’s pretty easy to do, actually, but, as you already know,
we wouldn’t print anything without writing a test for it, right?

// code/code_test.go

func TestInstructionsString(t *testing.T) {
instructions := []Instructions{

Make(OpConstant, 1),
Make(OpConstant, 2),
Make(OpConstant, 65535),

}

expected := `0000 OpConstant 1
0003 OpConstant 2
0006 OpConstant 65535
`

concatted := Instructions{}
for _, ins := range instructions {

concatted = append(concatted, ins...)
}

if concatted.String() != expected {

13

t.Errorf("instructions wrongly formatted.\nwant=%q\ngot=%q",
expected, concatted.String())

}
}

That’s what we expect from the to-be-implemented Instructions.String method: nicely-
formatted multi-line output that tells us everything we need to know. There’s a counter at
the start of each line, telling us which bytes we’re looking at, there are the opcodes in their
human-readable form, and then there are the decoded operands. A lot more pleasant to look
at than \x00\x00\x00\x00\x00\x01, right? We could also name the method MiniDisassembler
instead of String because that’s what it is.

The test won’t compile, because the String method is undefined. So here’s the first piece of
code we need to add:

// code/code.go

func (ins Instructions) String() string {
return ""

}

Correct, we return a blank string. Why? Because that gives the compiler something to chew
on and us the ability to run tests again:

$ go test ./code
--- FAIL: TestInstructionsString (0.00s)
code_test.go:49: instructions wrongly formatted.
want="0000 OpConstant 1\n0003 OpConstant 2\n0006 OpConstant 65535\n"
got=""

FAIL
FAIL monkey/code 0.008s

Perfect, it fails. That’s a lot more useful to us than an undefined: String compiler error that
stops us from running the tests, because we now need to write another test and run it.

This other test is for a function that will be the heart of Instructions.String. Its name is
ReadOperands and here’s what we want it to do:

// code/code_test.go

func TestReadOperands(t *testing.T) {
tests := []struct {

op Opcode
operands []int
bytesRead int

}{
{OpConstant, []int{65535}, 2},

}

for _, tt := range tests {
instruction := Make(tt.op, tt.operands...)

def, err := Lookup(byte(tt.op))
if err != nil {

t.Fatalf("definition not found: %q\n", err)
}

operandsRead, n := ReadOperands(def, instruction[1:])
if n != tt.bytesRead {

t.Fatalf("n wrong. want=%d, got=%d", tt.bytesRead, n)

14

}

for i, want := range tt.operands {
if operandsRead[i] != want {

t.Errorf("operand wrong. want=%d, got=%d", want, operandsRead[i])
}

}
}

}

As you can see, ReadOperands is supposed to be Make’s counterpart. Whereas Make encodes the
operands of a bytecode instruction, it’s the job of ReadOperands to decode them.

In TestReadOperands we Make a fully-encoded instruction and pass its definition to ReadOperands,
along with the subslice of the instruction containing the operands. ReadOperands should then
return the decoded operands and tell us how many bytes it read to do that. As you can probably
imagine by now, we’re going to extend the tests table as soon as we have more opcodes and
different instruction types.

The test fails because ReadOperands is not defined:
$ go test ./code
monkey/code
code/code_test.go:71:22: undefined: ReadOperands
FAIL monkey/code [build failed]

In order to get it to pass we have to implement a ReadOperands function that reverses everything
Make did:

// code/code.go

func ReadOperands(def *Definition, ins Instructions) ([]int, int) {
operands := make([]int, len(def.OperandWidths))
offset := 0

for i, width := range def.OperandWidths {
switch width {
case 2:

operands[i] = int(ReadUint16(ins[offset:]))
}

offset += width
}

return operands, offset
}

func ReadUint16(ins Instructions) uint16 {
return binary.BigEndian.Uint16(ins)

}

Just like in Make, we use the *Definition of an opcode to find out how wide the operands are
and allocate a slice with enough space to hold them. We then go through the Instructions
slice and read in and convert as many bytes as defined in the definition. And again: the switch
statement will be extended soon.

Let me explain why ReadUint16 is a separate, public function. In Make we did the encoding
of operands to bytes inline. Here, though, we want to expose the function so it can be used
directly by the VM, allowing us to skip the definition lookup required by ReadOperands.

15

We now have one less failing test and can start to unwind and go back to the failing tests that
brought us here. The first one is TestInstructionString, which is still chewing on the blank
string:

$ go test ./code
--- FAIL: TestInstructionsString (0.00s)
code_test.go:49: instructions wrongly formatted.
want="0000 OpConstant 1\n0003 OpConstant 2\n0006 OpConstant 65535\n"
got=""

FAIL
FAIL monkey/code 0.008s

Now that we have ReadOperands, we can get rid of the blank string and properly print instruc-
tions:

// code/code.go

import (
"bytes"
// [...]

)

func (ins Instructions) String() string {
var out bytes.Buffer

i := 0
for i < len(ins) {

def, err := Lookup(ins[i])
if err != nil {

fmt.Fprintf(&out, "ERROR: %s\n", err)
continue

}

operands, read := ReadOperands(def, ins[i+1:])

fmt.Fprintf(&out, "%04d %s\n", i, ins.fmtInstruction(def, operands))

i += 1 + read
}

return out.String()
}

func (ins Instructions) fmtInstruction(def *Definition, operands []int) string {
operandCount := len(def.OperandWidths)

if len(operands) != operandCount {
return fmt.Sprintf("ERROR: operand len %d does not match defined %d\n",

len(operands), operandCount)
}

switch operandCount {
case 1:

return fmt.Sprintf("%s %d", def.Name, operands[0])
}

return fmt.Sprintf("ERROR: unhandled operandCount for %s\n", def.Name)
}

16

I don’t think I have to explain to you how this works because we’ve seen variations of this
going-through-a-byte-slice mechanism a few times now. The rest is string formatting. But
here’s something worth looking at:

$ go test ./code
ok monkey/code 0.008s

The tests in the code package now pass. Our mini-disassembler works. We can unwind even
further and rerun the failing compiler test that kicked off this ride through the code package:

$ go test ./compiler
--- FAIL: TestIntegerArithmetic (0.00s)
compiler_test.go:31: testInstructions failed: wrong instructions length.
want="0000 OpConstant 0\n0003 OpConstant 1\n"
got =""

FAIL
FAIL monkey/compiler 0.008s

Isn’t that beautiful? Alright, granted, beautiful may be a tad too much, but it sure isn’t the
eyesore that was want="\x00\x00\x00\x00\x00\x01".

We just leveled up. With such debuggable output, working on our compiler went from “fumbling
in the dark” to “here, let me get that for you”.

17

End Of Sample

You’ve reached the end of the sample. I hope you enjoyed it.

You can buy the full version of the book (including the complete codebase) or a bundle that
includes Writing An Interpreter In Go here:

https://compilerbook.com

18

https://compilerbook.com

	Compilers & Virtual Machines
	Hello Bytecode!
	First Instructions
	Starting With Bytes
	The Smallest Compiler
	Bytecode, Disassemble!

	End Of Sample

